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Summary

To estimate the production potential at a new, prospective field site by means of simulation or material balance, one needs to collect
various forms of costly field data and make assumptions about the nature of the formation at that site. Decline-curve analysis (DCA)
would not be applicable in this scenario, because producing wells need to pre-exist in the target field. The objective of our work was to
make first-order forecasts of production rates at prospective, undrilled sites using only production data from existing wells in the entire
play. This is accomplished through the co-Kriging of decline-curve parameter values, where the parameter values are obtained at each
existing well by fitting an appropriate decline model to the production history. Co-Kriging gives the best linear unbiased prediction of
parameter values at undrilled locations, and also estimates uncertainty in those predictions. Thus, we obtained production forecasts at
P10, P50, and P90, and we calculated the estimated ultimate recovery (EUR) at those same levels across the spatial domain of the play.

To demonstrate the proposed methodology, we used monthly gas-flow rates and well locations from the Marcellus shale-gas play in
this research. Monitoring only horizontal and directional wells, the gas-production rates at each well were carefully filtered and
screened. Also, we normalized the rates by perforation-interval length. We only kept production histories of 24 months or longer to
ensure good decline-curve fits. Ultimately, we were left with 5,637 production records. Here, we chose Duong’s decline model (Duong
2011) to represent the production decline in this shale-gas play, and fitting this decline curve was accomplished through ordinary least-
squares (OLS) regression.

Interpolation was done by universal co-Kriging while considering the correlation between the four parameters in Duong’s model,
which also showed linear trends (the parameters showed dependency on the x and y spatial coordinates). Kriging gave us the optimal
decline-curve coefficients at new locations (P50 curve), as well as the variance in these coefficient estimates (used to establish P10 and
P90 curves). We were also able to map EUR for 25 years across the study area. Finally, the universal co-Kriging model was cross vali-
dated with a leave-one-out scheme, which showed significant, but not unreasonable, error in the decline-curve-coefficient prediction.
The methods proposed were implemented and did not require various costly data, such as permeability and bottomhole pressure, thus
giving operators a risk-based analysis of prospective sites. While we demonstrated the procedure on the Marcellus shale-gas play, it is
applicable to any play with existing producing wells. We also made this analysis available to the public in a user-friendly web applica-
tion (Xi and Morgan 2018).

Introduction

The unconventional shale-gas revolution has played an important role in supplying the increasing energy demand worldwide and has
created benefits such as national energy security and jobs. However, the development of unconventional gas can be substantially risky
because of the difficulty characterizing the reservoir and understanding how the reservoir behaves. Unlike conventional reservoirs,
unconventional shale always has complicated transport mechanisms and ultralow permeability, while the induced hydraulic fractures
act as additional factors in evaluating the well performance (Clarkson et al. 2012). As a result, effective methods that can forecast the
unconventional gas production are critical for risk assessment and mitigation.

DCA is one of the basic tools used in production-rate forecasting and recovery estimation (Bhattacharya and Nikolaou 2013; Erdle
et al. 2016). The advantage it has over other approaches (e.g., material balance or reservoir simulation) is that it requires less data and
uses simple, empirical models. Arps’ hyperbolic rate/time equation (Arps 1945), which is widely applied in conventional plays, can
also capture the behavior of shale-gas rate decline with its hyperbolic decline constant b, which is sometimes greater than unity for
unconventional resources. Cipolla et al. (2010) addressed issues in techniques of conventional production analysis when they are
applied to unconventional reservoirs. Anderson and Liang (2011) developed a probabilistic approach on the basis of a “trilinear flow”
model for unconventional-reservoir characterization and forecasting. Additional models that deal with complex fracture networks were
developed by Diaz De Souza et al. (2012) and Moinfar et al. (2013). Furthermore, with the advancement of computing power and stor-
age capacity of computer hardware, a variety of machine-learning or data-mining methods can make contributions to production predic-
tion. For example, an expert system built on a multilayer artificial neural network (ANN) was developed by Ketineni et al. (2015) for
the production-performance prediction of infill-drilling locations at an offshore field. Support vector machine, a sophisticated method
for statistics, works well in pattern recognition, such as determining the location of sweet spots (Hauge and Hermansen 2017).

Although the previous methods might excel (given sufficient data and under appropriate assumptions), there are still limitations. For
example, numerical history matching requires solvers with strong robustness and various types of field data (Oliver and Chen 2011).
These conditions cannot always be satisfied because of the complexity of partial-differential equations or the scarcity of data in some
newly developed plays. ANNs might be viable with less-refined data, but a large amount of data and different data types are still neces-
sary. To find a proper ANN architecture, a significant amount of time is required for model training and cross validation. In addition,
many such approaches only produce deterministic results without quantifying the uncertainty.

In this work, we designed a simple and elegant approach to forecast production without relying on field data, such as permeability
and bottomhole pressure, with the ability to estimate the uncertainty of the predicted results. First, we fitted the production-decline
curve for existing wells using Duong’s model (Duong 2011). Then, a universal co-Kriging approach was adopted to interpolate the
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decline-curve parameters at undrilled sites. Finally, a heatmap of EUR was constructed with the interpolated parameters, enabling us to
generate production forecasts up to an arbitrary number of months in the future for any site in the spatial domain of the play. Because
Kriging models the decline-curve parameters as a Gaussian process over space, the variance of the predicted values was used to gener-
ate P10 and P90 bounds on forecasts and, thus, EUR. While we demonstrated the approach on the Marcellus shale-gas play, the method-
ology can be applied to any other play, conventional or unconventional, given that sufficient regional production data are available and
an appropriate decline-curve model exists for the reservoir type.

Methodology

Data Cleaning. Processing raw data is a common step before extracting any interesting information from the data. To fit Duong’s
model (Duong 2011) to the flow rates that represent the true production behavior of the reservoir, we cleaned the data in the following
ordered steps:

1. Drop data from vertical wells (keep only directional- and horizontal-well flow rates).
2. Order flow rate by increasing date.
3. Remove values that date from before the completion date.
4. Remove any zero values at the beginning (before first positive value) or remove first value if it is positive (might be a partial

observation).
5. Remove data from before peak production, if there are any left.
6. Check for gaps, zero-values, or large changes (possibly created, for example, by shut-in or restimulation) in the record and only

keep data until first instance.
7. Reject the well if the resulting record is less than 24 months long (to ensure sufficient sample size for robust regression).
8. Normalize the gas rate by perforation-interval length, lateral length, or similar.

Decline-Curve Analysis. Duong (2011) proposed a decline-curve model that is serviceable for unconventional reservoirs that exhibit
long periods of linear flow caused by the pressure depletion within fracture networks. It models gas rate (q) as a function of time (t) and
four parameters (a, m, qi, q1) determined by means of two stages of sequential OLS regression. First, a and m were determined by OLS:

ln
q

Gp

� �
¼ m lnðtÞ þ a: ð1Þ

Then, qi and q1 were determined by OLS regression:

q ¼ qitam þ q1; ð2Þ

where

tam ¼ t�mexp
a

1� m
t1�m � 1
� �h i

: ð3Þ

In addition to catching the salient production traits of unconventional reservoirs, Duong’s model is also advantageous in its numeri-
cal stability when fitting the curve. Because the four parameters were obtained by implementing OLS on Eqs. 1 and 2, they were guar-
anteed to be the solution for the global minimum of the squared error surface. This feature makes the fitting procedure faster than those
using Arps’ hyperbolic model, which involves nonlinear regression where the global minimum of squared error cannot be ensured even
after many iterations.

Geostatistics Method. To calculate EUR at undrilled sites, the associated parameters must be predicted on the basis of known data
points. Although a variety of mathematical interpolation techniques are available, such as spline and polynomial, the spatial correlation
among observations was ignored. Therefore, methods from the Kriging family that would handle the underlying spatial structures were
applied in our work.

Intuitively, the four parameters (a, m, qi, q1) for each well should be mutually related because they collectively quantify the same
decline curve. Meanwhile, a more reliable estimate can be obtained by using the spatial correlation between different variables
(Trangmar et al. 1986). Thus, co-Kriging was used in our work to exploit the (potential) cross correlation between the four decline-
curve parameters and their joint spatial correlation simultaneously. Co-Kriging is a well-established procedure detailed in many books
(Journel and Huijbregts 1978; McBratney and Webster 1983; Vauclin et al. 1983). While co-Kriging takes advantage of multiple
parameters, large-scale spatial trends in the data (external drift) must be accounted for before Kriging. This idea is imparted from uni-
versal Kriging, which allows for Kriging in the presence of nonstationarity (Matheron 1971). Therefore, we used the features of the two
Kriging methods by first filtering out the external drift from the data and then co-Kriging the associated residuals, which led to an indi-
rect but comprehensive hybrid method, “universal co-Kriging.”

To construct maps of decline-curve parameters, and the subsequent EUR, over the spatial domain of the play, it is best to perform
this universal co-Kriging on blocks rather than specific points. The size of the block should be chosen to balance utility of the resulting
map and computation time, while the size should also be at a useful scale to support operational decisions and give sufficient spatial
resolution. However, too many blocks results in large memory and computational-time requirements for the Kriging process, and might
produce an unnecessary level of detail. Here, we recommend scaling the blocks to be roughly twice the average lateral length, such that
if a well pad were placed in the center of a block, the lateral(s) would still be contained within the block, unless chosen to be exceed-
ingly long. In “block Kriging” the mean and variance of the predicted parameters are determined for each block. Because we performed
co-Kriging, the covariances were also determined. Thus, we determined the P10, P50, and P90 EUR by numerically integrating
Duong’s decline curve with its parameters sampled from a multivariate normal distribution. To better explain this integrated approach,
a case study on the Marcellus Shale is presented in the following section.

Case Study

Data Source. Monthly production data were obtained for all the Marcellus wells (11,904 wells out of 15,988 have production data, and
their positions are shown in Fig. 1), along with various header data for each well (e.g., geographical coordinates, completion date),
from DrillingInfo (2018) and the West Virginia Geologic and Economic Survey (2018). The data have been cleaned by the procedure
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previously introduced. Furthermore, we used flow rates only from horizontal and directional wells (records from vertical wells were
dropped) because they play a major role in massive unconventional shale-gas extraction. Besides, normalizing the flow rates with the
perforation-interval length can lead to an equitable comparison between wells. Data from 5,637 wells met all the conditions and, thus,
were later used for curve fitting. The data size after each processing stage is summarized in Table 1.

Parameter Visualization. The distributions of parameters from fitting Duong’s model are shown in Fig. 2. We found that parameters
a and m followed normal distributions, while qi and q1 appeared to be log-normal (the log-transform of these parameters followed
normal distributions). As a side observation, if one included the vertical wells in the analysis, qi and q1 would become bimodal, and
the rest of the analysis would proceed by clustering the wells on the basis of these two variables and performing universal co-Kriging
on each mode with an additional indicator variable included to predict which mode each block should resemble.

In Fig. 3, the correlation coefficient of the parameter pairs is shown in the upper triangle and the lower triangle shows the scatter-
plot matrix for each parameter pair. We found good correlations between a and m (Fig. 3d), and separately between logðqiÞ and
logðq1Þ (Fig. 3l), because they, respectively, displayed a linear trend and because the associated correlation-coefficient values (0.873 in
Fig. 3a and 0.77 in Fig. 3i) were high (note that all the log transforms used in this analysis were natural-log transforms). This was an
indicator that the value of one parameter can depend on other parameters, to some extent. As a result, co-Kriging should be used in fur-
ther interpolation because predictions will borrow strength from these correlations in addition to the spatial correlations.

True

False

Has production?

Fig. 1—Marcellus well locations in the study area [data source: DrillingInfo (2018), West Virginia Geological and Economic Survey
(2018)]. Wells denoted with blue points have production data and are used in the analysis in this paper (red points do not have
available data).

Criteria Number of Wells 

099,51latoT

Production data available 11,904 

Passed filtering conditions 8,527 

Horizontal and directional wells 5,637 

Table 1—Number of wells available for each filtering stage.
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External Drift. To ensure the stationarity of our data before geostatistical modeling, we fitted a background trend (external drift) for uni-
versal Kriging. Because we have r multiple response variables (in this case, the four decline-curve parameters) and p multiple explanatory
variables [in this case, spatial coordinates x and y, which are the Universal Transverse Mercator (UTM) Eastings and Northings (both
in km), respectively, plus an interaction term xy], we fitted a multivariate multiple linear regression model for the background trend:

Y ¼ bZ þ e; ð4Þ

where Y is an n� r matrix (n being the number of observations, or wells, in this application) containing each response variable as a
column, Z is an n� ðpþ 1Þ matrix containing the explanatory variables plus a series of ones (for fitting an intercept) as columns, b is a
ðpþ 1Þ � r matrix containing the regression coefficients, and e is an n� r matrix of error terms. The regression coefficient estimates,
their p-values, and the adjusted R2 values are reported in Table 2.

Table 2 shows that while the adjusted R2 values were fairly low for all four models, the coefficients were generally significant (low
p-values), although also generally low in magnitude. Nevertheless, these models had better adjusted goodness of fit (higher R2) than
simpler models with fewer terms, including models of just an intercept (or mean, which would be used for simple Kriging). This crite-
rion for a higher adjusted R2 was the reason for including the interaction term xy.

Fitting Linear Model of Coregionalization. Predictions can be strengthened by using the strong correlation between a and m and between
qi and q1. A linear model of coregionalization models not only the spatial autocorrelation of individual variables, but also the between-
variable spatial dependence. Here, we fitted a Matern variogram model (Diggle and Ribeiro 2007) with nugget to all direct and cross vario-
grams, as shown in Fig. 4.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2,000

1,500

1,000

500

0

1,500

600

400

200

0

800

600

400

200

0

1,000

500

0

1,250

1,000

750

500

250

0

2,000

1,500

1,000

500

0

–5.0

0×100

0 25,000 50,000 75,000 100,000 5.0 7.5 10.0 12.5

1×105 2×105 3×105 4×105 5×105 8 10 12 14

–2.5 0.0
a

qi

qinf

log(qi)

log(qinf)

C
ou

nt

C
ou

nt
C

ou
nt

C
ou

nt

C
ou

nt
C

ou
nt

0 1 2 3
m

Histogram for qi

Histogram for qinf

Histogram for a Histogram for m

Histogram for log(qi)

Histogram for log(qinf)

2.5 5.0

Fig. 2—Histograms of the values of Duong’s decline-curve model parameters as fitted to the available well-production data.
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Results and Discussion

Block Co-Kriging With External Drift. Figs. 5 and 6 show the mean and variance, respectively, of each decline-curve parameter.
They were estimated as 5 � 5 km blocks, spanning the domain of the Marcellus. The noticeably low a and m predictions in the northern
part of the Marcellus were controlled by two wells: API 37-105-21728 and 37-105-21722, which showed radically sharp decline after
3 months. One can also see that larger qi and q1 values generally exist around southwest Pennsylvania and in the northeast, around
Bradford County, Pennsylvania (Fig. 5). Fig. 6 shows small variances for all the parameters in proximity to the existing well locations, and
increasingly large variances toward the fringe of the Marcellus, with the largest values being in the far southwest and northern extents.

EUR. The EUR at P10, P50, and P90 levels was estimated by drawing a random sample size of 1,000 ft from a multivariate normal dis-
tribution for a, m, lnðqiÞ, and lnðq1Þ. The mean values and covariance matrix were constructed from the universal co-Kriging-predicted
values in each block. The samples of the log-transformed variables were back transformed by means of
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Fig. 3—Scatter plot for fitted decline-curve parameters (lower triangular part) and associated correlation-coefficient values (upper
triangular part). Each scatter-plot panel corresponds to its correlation coefficient in a mirror position [e.g., panel (d) is associated
with the value in panel (a)].

Response Intercept x Coefficient y Coefficient xy Coefficient Adjusted R2

a
–4.4×100

(8.9×10−3)
7.0×10−3

(2.0×10−2)
–1.4×10−6

(2.6×10−2)
9.4×10−4

(1.1×10−2)
0.04

m
8.7×10−2

(9.0×10−1)
3.5×10−3

(4.9×10−3)
–6.9×10−7

(9.7×10−3)
1.9×10−4

(2.0×10−1)
0.04

ln(qi)
3.9×101

(3.5×10−25)
3.8×10−3

(5.7×10−1)
4.4×10−7

(7.6×10−1)
–7.2×10−3

(5.3×10−19)
0.19

ln(q∞)
3.9×101

(4.0×10−33)
–1.6×10−2

(4.8×10−3)
4.5×10−6

(3.5×10−4)
–7.3×10−3

(1.5×10−24)
0.16

Table 2—Coefficient estimates and their p-values (in parentheses, lower values mean more statistical significance), along with the adjusted R2

values, for the multivariate multiple linear regression.

REE191793 DOI: 10.2118/191793-PA Date: 30-May-19 Stage: Page: 5 Total Pages: 13

ID: jaganm Time: 14:32 I Path: S:/REE#/Vol00000/190024/Comp/APPFile/SA-REE#190024

2019 SPE Reservoir Evaluation & Engineering 5



qi ¼ expðlnðqiÞ þ 0:5fvar½lnðqiÞ�gÞ; ð5Þ

and q1 ¼ expðlnðq1Þ þ 0:5fvar½lnðq1Þ�gÞ; ð6Þ

to correct for bias. Each sample was then used to calculate a 25-year EUR value (in Mscf):

EUR ¼
ð25�12

1

qðt; a;m; qi; q1Þdt; ð7Þ

where qðt; a;m; qi; q1Þ represents Duong’s (2011) model and t is measured in months. The 10th, 50th, and 90th percentiles of the result-
ing EUR vector produced the P90, P50, and P10, respectively. Because we normalized the flow rates earlier, using perforation-interval
length in units of 1,000 ft, the unit of our predicted EUR was Bcf per 1,000 ft. These are mapped in Fig. 7, where we observed that a
larger EUR generally coincides with larger qi and q1 (compare to Fig. 5).

Male et al. (2016) predicted the EUR for wells with 25-year production in the Marcellus shale play and reported a median value of
3.9 Bcf. The median of our predicted EUR (P50) was 1.39 in Bcf/1,000 ft, and the median of the perforation-interval length in our data
set was 3,842 ft. Therefore, we estimated our median EUR in Bcf by calculating their product, 5.34 Bcf, which was fairly close to
3.9 Bcf.

Validation. Leave-one-out cross validation offers a rational way to test the quality of the universal co-Kriging previously mentioned.
In this validation scheme, a single well (with known decline-curve parameters) was removed from the population of wells, and the uni-
versal co-Kriging model was refit to the remaining data. Prediction using this new model was made at the single wellsite, and the pre-
dicted decline-curve parameters were compared against their known values at the site. In addition, the predictions of the decline
parameters from the background trend (Eq. 4) were also recorded for comparison. We repeated this process for 100 randomly selected
wells. This sample size of 100 was chosen as a balance between increasing statistical robustness of the analysis of errors and decreasing
computational time (this process is computationally costly, with these 100 samples taking approximately 32 processor hours). Histo-
grams of the resulting percent error of each parameter (difference between the true value and the predicted value divided by the true
value) are presented in Fig. 8.
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Difference-of-mean hypothesis tests indicate whether the Kriged predictions are statistically different from the true values. Here, we
ran one-sample t-tests on the percent error of each parameter to see if the mean percent error was significantly different from zero. The
null hypothesis is that the mean percent error equals zero, and the alternative hypothesis is that it is not equal to zero. The results (esti-
mate of mean percent error and associated p-value of the hypothesis test) are reported in Table 3. Because the hypothesis tests were
conducted at the 95% confidence level, any p-values less than 0.05 indicate a statistically significant difference from zero mean (one
can reject the null hypothesis in favor of the alternative). Table 3 shows that most of the p-values for Kriging were well above this
0.05 threshold, with ln(qi) being the only exception, whereas all the p-values for the background trend were below this threshold. In
other words, on average, the universal co-Kriging gives predictions that are not significantly different from the true values (except in
the case of qi), and has a much greater predictive accuracy than the background-linear-trend model alone, which gives predictions that
differ strongly from the true values.

Besides these hypothesis tests, which relate to the central tendency and standard deviation of each histogram in Fig. 8, it is also
worth discussing the extremes of the histograms. For most cases, the percent error rarely exceeded 620%. However, for parameter a,
we saw some outlier cases (four of them, for Kriging) where the percent error can exceed 61,000% and increase as high as –3,800%.
These outliers can be explained by the very small magnitude of the true a values for these four cases because they are the closest to
zero. The true a value is in the denominator of the percent error calculation.

Two of the wells sampled for this leave-one-out cross validation were examined in more detail in Fig. 9—the well with the least
overall percent error (“Best”) and the well with the greatest overall percent error (“Worst”). The overall percent error was taken as the
mean absolute percent error across the decline-curve parameters, except for a because of its outlier values, as previously discussed.
Fig. 9 gives a sense of the range of discrepancy between the Kriged decline curves, the initial OLS decline-curve fits, and the cumula-
tive production from the data. In these examples, at the end of the production data (53 months for “Best” and 63 months for “Worst”),
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Legends are provided in the lower right-hand corner of each panel; the left side represents dots or existing wellsites, and the right
side represents grids or undeveloped sites. Well-location data were provided by West Virginia Geological and Economic Survey
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the percent error between the Kriged decline-curve prediction and the data was –5.72% for the “Best” case and 182% for the “Worst”
case. Similarly, comparing the 25-year EUR from the Kriged decline curve and the OLS-fitted decline curve calculated –6.88% for the
“Best” case and 223% for the “Worst” case. Extending this error analysis to all 100 wells in the leave-one-out cross validation produced
mean percent errors of 14.0% when compared with the cumulative production from the data, and 14.1% when compared with the
25-year EURs, indicating that the risk of excessively large errors witnessed in the worst-case scenario was low.

Geological Interpretation. Several authors (Wrightstone 2009; Erenpreiss et al. 2012; Wang and Carr 2013; EIA 2017) conducted
geological mapping in the Marcellus Shale regarding its depth, thickness, and thermal maturity (Figs. 10 and 11), which helped inter-
pret the P50 EUR heatmap constructed in our study. From a geological perspective on unconventional plays, high-hydrocarbon-
generation potential and a thick source rock attribute to a high gas production (Zou et al. 2010; Mallick and Achalpurkar 2014). Also,
thermal maturity was a key factor of the hydrocarbon-generation potential, and was correlated to formation depth because of the geo-
thermal and pressure gradients (the Marcellus Formation top contour vs. thermal maturity zones in the left side of Fig. 10). In the over-
mature zone, and those within the gas-generation window (gas prone), an in-situ natural-gas-accumulation region formed (the gray and
pink zone shown in the left side of Fig. 10) while a considerable amount of natural-gas reserves was unlikely to be found in the imma-
ture zone (the light-yellow area shown in the left side of Fig. 10). Hence, high gas production from the wells located in the middle of
the play resulted from the source rock that tended to generate more gas than oil. The wells in the northeast produce a significant amount
of dry gas from overmatured shale. Similarly, abundant yields of dry gas were found along the southwest boundary of the play despite
the few number of wells that have been drilled there so far. In addition, the thicker the source rock, the more hydrocarbon-productive
kerogens it might bear. Thus, the shale thickness was another critical factor to consider when assessing the production potential. In
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Fig. 6—Predicted variance for each type of parameter for Duong’s (2011) decline-curve model: Panels (a), (b), (c), and (d) show the
mean values for a, m, log(qi), and log(qinf), repectively (all the log transforms used in this analysis are natural-log transforms).

REE191793 DOI: 10.2118/191793-PA Date: 30-May-19 Stage: Page: 8 Total Pages: 13

ID: jaganm Time: 14:33 I Path: S:/REE#/Vol00000/190024/Comp/APPFile/SA-REE#190024

8 2019 SPE Reservoir Evaluation & Engineering



Fig. 11, the P50 EUR heatmap (right side) revealed that the high-yield areas previously mentioned (middle, northeast, southwest)
always show up in the bright-green and pink zones in the isopach map (Fig. 11, left side) where the associated Marcellus Shale gross
thickness is considerable.
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Fig. 7—Predicted EUR heatmaps across the Marcellus Shale. Panels (a), (b), and (c) stand for P10, P50, and P90 EUR, respectively.
The units are Bcf per 1,000 ft of interval length.
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As a result, the high-EUR zones in our results were located in the northeast, middle, and southeast part in our mapping area, sharing
similar locations with high thermal maturity and great thickness (see comparisons in Figs. 10 and 11). In other words, our production
forecasts and reserves estimates were in agreement with the associated geological evidence. Besides qualitatively validating the heat-
map with geological variables, it was beneficial to incorporate them as additional inputs in co-Kriging to strengthen the predictions of
the decline-curve parameters for undrilled wells, taking advantage of the spatial correlations among geological variables. Specifically,
we might add the shale thickness, vitrinite reflectance (%Ro), or other factors at operating wellsites as one of the dependent variables in
co-Kriging interpolation, and use maps of such properties away from the wells to increase the accuracy of, and reduce uncertainty in,
our decline-curve parameter predictions.

Website Application. In order to increase the transparency of this work and make the findings available in a comprehensive format,
we created a website application (Xi and Morgan 2018). This utility allows one to click anywhere in the Marcellus Shale to view the
predicted decline curves (P10, P50, P90) along with specific EUR values for the selected block. Furthermore, one can view the fitted
decline-curve parameter values (as well as goodness of fit) at each well in geographical format.
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      Kriged                  Trend 

Parameter Mean p-value Mean p-value

a –3.62 0.94 107.37 0.003 

m –0.44 0.53 2.32 0.006 

ln(qi) 9.79 7.56×10–36 13.97 5.63×10–45 

ln(q∞) –0.10 0.83 4.44 6.35×10–9 

Table 3—One-sample t-test results for each decline-curve parameter and for the universal co-Kriging

predictions and the background trend predictions.
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Fig. 9—Two examples of Kriging-predicted decline curves (dashed lines) plotted alongside their associated well-production data
(solid lines with points) and OLS-fitted Duong’s model (dotted lines). The “Best” case represented the well from the leave-one-out
cross validation with the least amount of overall error between the Kriged decline-curve parameters and the initial OLS parameter
estimates for Duong’s model. The “Worst” case represented the greatest overall error. In both cases, the initial OLS parameter esti-
mates were withheld from the geostatistical model fitting, so the model predictions were completely uninformed by the data at
these wells.
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Fig. 10—Thermal maturity and initial yields in the Marcellus Shale are shown on the left side: The light-yellow area represents the
immature zone, the green zone denotes oil prone, the pink zone denotes gas prone, and the gray zone denotes the overmature
zone. On the right side, the heatmap of the predicted P50 EUR indicates that high-production areas (orange red) tend to be located
within the gas-prone zone and the overmature zone, where gas is the major product from the source rock (e.g., the northeastern
high-EUR area exists mainly within the overmature zone). The left side of the figure was sourced from the US Energy Information
Administration (2017) on the basis of DrillingInfo (2018) and the US Geological Survey (2018).
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Conclusions

The approach we proposed in this paper is a combination of DCA and geostatistical methods. First, the parameters that describe the
natural-gas-production variation were obtained by decline-curve fitting. According to the statistics of these parameters, we chose a
proper geostatistical method (universal co-Kriging) to interpolate the parameters for undrilled sites. Finally, we estimated the EUR and
associated decline curve with predicted parameters while quantifying the uncertainty at the same time. Without requesting costly types
of data, our approach implemented and provided operators with a good reference for early-stage explorations.

The median value of our predicted EUR (P50) was close to that reported by other authors (Male et al. 2016). The heatmaps gener-
ated in our case study showed that the promising sites with high EUR are mainly located in the middle and northeast of the study area,
which was consistent with other geological evidence in the Marcellus. Although some areas along the southeast boundary of the EUR
heatmap also appeared to be sweet spots, the reliability of their EUR might suffer from the relatively high variance of the associated
decline-curve parameters. Furthermore, the validation not only indicated the superiority of the universal co-Kriging over the
background-trend prediction, but also showed reasonable percent errors in predicted parameters despite the “magnitude” issue for
parameter a.

Last, some extensions and modifications might be applied in our future work, such as adopting a modified Duong’s (2011) model
(Joshi and Lee 2013) to avoid potentially unrealistic forecasts or using a pattern-recognition method (unsupervised learning) to further
narrow the range of promising areas on the basis of our current analysis.

Nomenclature

a ¼ intercept constant defined in Duong’s model
b ¼ hyperbolic decline constant

EUR ¼ estimated ultimate recovery, Mscf
Gp ¼ cumulative gas production, Mscf
m ¼ slope defined in Duong’s model
n ¼ number of observations, or wells in this research
p ¼ number of different explanatory variables
q ¼ gas rate, Mscf/month

q1 ¼ gas rate at infinite time, Mscf/month
qi ¼ initial gas rate, Mscf/month
r ¼ number of different response variables
t ¼ time in accordance with gas rate, month

tam ¼ one parameter in Duong’s model
x ¼ Eastings in UTM, km
y ¼ Northings in UTM, km
Y ¼ matrix containing response variables from all observations
Z ¼ matrix containing explanatory variables plus a series of ones
b ¼ matrix containing regression coefficients
e ¼ matrix containing error terms
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